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The problem of stability of equilibrium of branching points of finite-dimen- 
sional conservative systems whose potential energy depends on a real para - 
meter is considered. 

The investigation of branching point stability is fraught with complications due to 
degeneration of the potential energy second differential at such points. It is shown here 
that in most common cases stability or instability of a branching point can be assessed by the 

properties of the equilibrium curve in its neighborhood. The proof is based on geomet- 
rical considerations that are independent of the rank of the potential energy Hessian, 
and is thus valid for systems that do not satisfy Poincari ‘s conditions [l 1 (see Remark 
3.1 below ). When these conditions are satisfied, the problem reduces to a system with 
a single degree of freedom, and the basis results of the present work are readily obtained 
by methods of the Poincari - Chetaev theory of equilibrium bifurcation [l ,2 I. &ten - 
sion to the case of several parameters is considered. 

The results obtained by RLnniantsev ‘s method 13 1 may be applied to problems of 
steady motion equilibrium. 

Investigation of branching point stability is of interest for obtaining a complete 

picture of distribution of stable points on the equilibrium curve branches and, also, in 
connection with the “safety” of branching (see Remark 3.2 > . 

1. We use the notation X 3 5 for the n-dimensional configuration space ; 
A 3 a for an interval of the numerical axis; 0 (z), 0 (a), and 0 (3, a) for 

the neighborhoods of pointsx, A, and XA, respectively, and lJ (5, a) for the 
potential energy, 

We say that the property dependent on parameter UEA is specified on X 
if property fi (z, a) is specified on XA, i. e. that set B C XA (the deter - 

mining set 1, at w&se poir$ the property (p ( z, cc) = 1) is satisfied, while outside 

that set it is not satisfied (fi (z, cc) = 01, is specified. 
We call set B c XA open with respect to CI at point (z”, a”) E B if 

for any e>O ; ci=~A is an iMer point of the projection of set B 0 Oe 
(x5, a”) on A (i.e. there exists for every a in a fairly small neighborhood of 

0 (a”) a point 2 such that (s, a) E B fl Oe (x0, a”)). We call the set B 

open with respect to a (open with respect to a in region D C XA), if it is open1 at 

-all its points ( at points in D 1, and open with respect to .a relative .to set M c XA, 
if set B fl M is open with respect to a . 

Asan example we consider two systems determined respectively, by the potential 
energies II (.t, a) = i - azB and II (z, a) = --F - a2 (the one-dimensional 

case 1. Equilibrium curves of these systems are shown in Fig. 1, where the solid and the 
dash lines relate to stable (set B+ ) and unstable equilibrium, respectively. In both 
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cases set B+ is open with respect to u , including at point (0,O) 
at that point the first system is not coarse IS I. Simultaneously set 

271 

in Fig, 1, a, although 
B+ (Pig. 1, a 1 is _ 

is not Open with respect to a relative to the straight line 5 = 0. This is closetbut 
not equivalent 1 to the meaning given in C7 1 to the noncoarseness of the property in re - 
lation to perturbations of parameter o- Thus in these two examples the sets that are 
0pt-t~ with respect to u correspond to stability, lt is shown below that with certain lim- 
itations this conclusion is generally valid. 

Fig. 1 
By analogy to the concept of the equilibrium branching point we say that (z’, a”) 

is a branching point of the property p (r, _a) if it is a branching point of solutions 
of the equation p .(5, a) = 1, i. e. 

(% > 0) (3x1, 22, a’) (~1, a’), (~2, a’) E B i-l @ (& a”) (1.1) 

If (1.1) is satisfied for a’ = 0~’ we call the branching trivial. 
lf at point (9, a”) branching is nontrivial and there exists a neighborhood~~z’, 

a”) in which set I3 is empty when a < a” or a > a’; that point is called 
the Poincari limit branching point, at which set .I!f is obviously not open with respect toa . 

We say that a single half-branch of set B (see Fig. 1, a, ) adjoins point (a?, a”) 
on the left, is set B nonempty in any neighborhood of that point for CL < a” , and 
there exists region 0 (x0, a’) in which for every a < cc” the solution of the equ- 

ation b (z, a) = 1 is unique (i. e. condition (1.1) is not satisfied for CL < cc” 
and set B is not empty 1. The concept of the right-hand single half-branch (Fig. 1, b ) 
is similarly obtained. 

We call (z”, ~9) the equilibrium or steady point (with respect to z ) if x0 

is the equilibrium position for a = a”. The property of steadiness with respect to 

z is denoted here by II ’ (z, a) = 0 . The determining set B c XA is in 
that case defined by the equilibrium curve. The equilibrium point (z”, a”) is called 
isolated when for a fixed a = CC” there exists a neighborhood that does not contain 

any other equilibrium points. 

We denote by AII (z, CC) > 0 the property of positive definiteness of potential 

energy increments with respect to 2 (i. e. the property of strict minimum of function 

II (2, a) with respect to I(: 1. 
Below the potential energy is assumed to be continuous with respect to (5, 01) , and 

some of the statements will be based on the further assumption that the potential energy 
gradient with respect to J: is continuous in (5, a). 

2. Lemma 2.1. Let (z”, a”) be a point of equilibrium branching to which 
adjoins the single half-branch C of the equilibrium curve B. we assume that in 
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the neighborhood of that point grad, II (z, a) is continuous with respect to (S, U), 
that property Au > 0 is satisfied on c outside point (x0, GO”) and that at point 

(9, a”) itself that property is violated. Then for a = a* there exists a connected 

set of equilibrium positions that contain point a? and not coincident with it (i. e. the 

equilibrium position 1~’ is not isolated when a = a0 and there is no discrete ac - 

cumulation of equilibrium positions 1. 

Pro of. ft can be assumed without loss of generality that the zero (8, 0) of 
space XA is a branching point, that the half-branch 5 = 9, a < 0 is thehalf-branch 

C ,and that II (0, a) G 0. 

Let us consider the sequence (ai), cci + 0, ai < 0. By the definition of the single 
half-branch there exists a neighborhood D = 0 (0) that is independent of cc and 
does not contain equilibriums other than 0 when a < 0 . We denote by E (k, CQ) 

the set of potential energy level in X for a = ai: II (x, ai) = h and by K (h, ai) 
a component of that set. Owing to property ATI (8, ai) > 0 there exists for every ai 
in the considered sequence D a region SEi where all components of the level of 
function I1 (x7 %) are homeomorphic to hyperspheres , and it follows from h, < h, 
that 9 E 01 C os, *where o, is the region bounded by component K &, ai). 
We call region Qi (we have in mind the greatest region in II that has these properties) 
the region of regularity of functions Tl (r, a+) . The volumes of regions S& may tend 
to zero when ai - 0, but all these regions are unbounded in D owing to the absence 

in the latter of steady nonzero points. Hence the upper topological bound G* = It* 52i 

of sequence (04) has at least one point at the boundary of region D , obviously in- 
cluding point 6. Since the lower topological bound of that sequence is not empty 
(point 8 belongs to it 1 *hence by Zoretti’s theorem E8 1 the upper topological bound 

Qt* is connected, and by virtue of the above does not degenerate into point 8. 
We shall show that the connected set W c ST* (9 = So) of zeros of function 

n (x, 0) that does not degenerate into point 8 does exist. 

Since at point (9, 0) the property AI1 > 0 is violated, hence one of the follo - 

wing conditions must be satisfied. 
1”. Every neighbo~o~ 0 (8) has points 2’: II (z‘, 0) < 0. 
2”. There exists a neighborhood 0 (9) where JI (G 0) > 0 , and points 2’: 

II (so, 0) = 0 exist in any neighborhood 0 (9) l 

Condition 1 a implies the branching of property lI = 0 to the left. In that case 
Q’ = Q*, which is proved as in [9]. This also applies to case 2 ’ when, as in the 

first case, the branching of property II = 0 is to the left I 

We shall now prove the existence of set Q2” in case 2 ‘, if there is no left branch- 
ing of property rI=o l A neighborhood of point 9 in which I1 (5, ai) > 0 when 

% < 07 X # 0 then exists. It can be shown that such neighborhood coincides with D. 

Let us consider sequence (~1, xi - 9, II (xi, 0) = 0 in D . We have Tt (.c,. 

ai)= ?iji > 0. Let Kji = K (hi<, CQ) be the component that contains point xi. The 

definition of the regularity of region 52i implies that either Kji c Qi or h’,; : / 
Bi = . . . . . ff there exists a j such that the first of these possibilities occurs for an in- 

finite number i, we obtain the i -sequence of regions tiii C Qi bounded by com- 

ponents Kji. The upper topological bound of that sequence may be taken as the setago 7 
since xj E $2” (lj # 0) and II (.rj, ai) -- 0 when ai - 0 (point XJ is fixed). 
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If there is no such i , there exists for every i a sequence {j} in which almost the 
whole i -sequence {Kii) does not intersect Q;. Consequently the boundaries 
r (%) of these regions separate points sj and 8 [lo]. We denote (for some i E (i) ) 

Qi = lt*ai, Sj = lim sup II (5, aJ 
i-rm i-rca XEI. 3 

where lj represents segment (0, zi). Evidently Qj intersects r (D), and Sj > 0. 
Since the quantity grad, II (z, a) is bounded in the neighborhood 0 (0, 0), there ex- 
ists a number g: Si < g 1 si 1) that is independent of j . Hence lim Sj = 0 when 

Xj + 0, and since points XI and 8 are separated by set Pi we have sup II (t, 
0) < Si, 5 z Qj and it is possible to set Q” = It* SF, i - rx). 

It has thus been shown that in all considered cases there exists sequence (Qi} whose 
upper topological bound may be assumed to be the set Q”, since it is connected and 

belongs to component K (0, 0). We shall now show that Q0 consists of stationary point 

of function II (5, 0) and, by the same token, prove the lemma. Let us assume the 

contrary, i.e. that there exists a nonstationary point I’ E Q’. Then owing to the con- 

tinuity of grad, KI (I, a) there exists for every fairly small I ai I a gradient tube 

Ci c X of function n (z, ai) which contains point I’ and whose all gradient lines 

intersect the region of negativeness of function rI (x, ai). Simultaneously there exists 

sequence (ail, ai - 0 for which the intersection Ci n Szi is not empty ( since 

J’ C a”). But any gradient line that intersects the region of regularity of Ri cannot 

intersect the region of negative functions II (5, a) (it can be assumed that such func- 

tion has no stationary points in the considered length of the gradient tube. This contra- 

diction proves the lemma. 

L e m ma 2.2. If condition An > 0 is satisfied at an isolated equilibrium 
point) and in the neighborhood of that point function n (.z, a) is continuous, then 
for every e > 0 there exists a 6 > 0 such that a component of the level of func - 

tion IT (x, a) homeomorphic to the hypersphere surrounding point 0 exists in 0” (0) 
for every a E 06 (0) . 

Proof. The idea of the proof was in essence formulated in [ll]. Let Q be the 

regularity region of function n (x, 0) in the 0’ (0) neighborhood. We specify 

three components of level in that region: K, = K (Al, 0), K, == K (it, 0) and 
K * ~1 K (h*, 0) with a1 < h* < h, , and denote 

S1 (a) = sup Tl (I, a), z E K,; S, (a) = inf II (x, a), z E K, 

Since region o bounded by components A-1 and K, does not contain steady 

points of function n (5, O), it is possible to select a 6 as small as desired and such 
that for a E Ob (0) region 61 does not contain steady points of function TI (I, a), 

that S1 (a) < S, (a) , and that IC*: S1 (a) < II (x*, a) < S, (a) exists in o . Hence 
the component K, of function n (2, a) which passes through point z* is bounded in 

* and, since o does not contain steady points, it is a separatrix in o , and is con- 

sequently homeomorphic to the hypenphere [lo 1. 

Corollary. If An (z?, cc’) > 0, then set II’ = 0 is open in cz at point 

(X0”, a”). If, furthermore, the neighborhood 0 (x0, a”) doa not contain a trivial bran- 
ching of equilibrium, set An > 0 is also open with respect to a at point (.z’, a”). 
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At least one steady point of potential energy obviously exists in the region bounded 
by the component dealt with in Lemma 2.2, which implies that set II’ = 0 is open 

with respect to a’ . If the considered region does not contain trivial branching of equi- 

librium , the steady points are isolated and , owing to the boundedness from below of 

function II (5, a) in 0 (z’, cc’), at least one of these is a point of strict minimum 

of function lI (2, a) with respect to I . This implies that set AII > 0 is open. 

3. Let us assume that for fixed cz the potential energy satisfies in addition to the 
condition of continuity, satisfies the conditions under which inversion of the Lagrange 
theorem is valid for isolated positions of equilibrium. We thus assume the fulfilment of 
conditions for which the following statement is valid U2 I : if .at isolated equilibrium 

positions the potential energy has no minimum, that equilibrium position is unstable 
(statement A 1. 

In an isolated equlilbrium position any minimum of potential energy is strict and 

isolated (an isolated minimum implies the existence of a neighborhood that does not 
contain any other minima 1. 

Various cases in which inversion of the Lagrange theorem is valid were considered 
in [12 - 141. 

The condition of isolation of the equilibrium position given in Statement A was 

used by Chetaev Cl2 1 primarily for eliminating cases of the kind of Painleve’s example 

(see, e. g., [14 1 ). All examples of invalidity of inversion of the Lagrange theorem 
known to the author relate to nonisolated equilibrium positions. 

Remark 3.1. Statement A is evidently valid under the following constraints 

imposed by Poincari on potential energy Cl I. 
1”. .At the branching point rank [IIii (so. a’)] = n - 1 ( I&l is the matrix of 

second derivatives of potential energy with respect to coordinates) and one of the prin- 

cipal minors of order n - 1 is positive. 

2”. Outside of branching points of the equilibrium curve det [&I # 0. 

Under these conditions the problem reduces to a system with one degree of freedom. 
From Lemmas 2.1 and 2.2 on assumptions made at the beginning of Sect. 3 we ob- 

tain several theorems. 

Theorem 3.1. In region D C XA that does not contain trivial branching 

of equilibrium the set of stable equilibrium points is open with respect to a. 
This theorem with Statement A taken into account is equivalent to the second 

part of the corollary of Lemma 2.2. An example illustrating this theorem was consid - 
ered in Sect. 1 (Fig. 1). 

Theorem 3.2. A.ny limit point of branching is unstable. 

Atalimitpointset IT’= 0 is obviously closed with respect to a , which con- 

tradicts the corollary of Lemma 2.2, if it is assumed that the limit point is stable and 
is an isolated equilibrium point. 

Theorem 3.3. Let in the neighborhood of a nontrivial branching point grad, 
I-I (5, cc) be continuous with respect to (z, a), and let a single half-branch of the 

equilibrium curve adjoin that point. Then the stability properties of the branching point 

is the same as along the single half-branch. 
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In fact, let (6, 0) be a branching point with a single half-branch adjoining it from 
the left. It follows from Theorem 3.1 that when point (6, 0) is stable, then for aa 
fairly small 1 a 1, a ( 0 , in the neighborhood 0 (0, 0) stable equilibrium points 
must exists. Hence , if the considered single half-branch is unstable, point (0, 0) is 
also unstable. If, however, that branch is stable, the stability of point (0, 0) follows 
from Lemma 2.1. 

Remark 3.2, From Lemma 2.2 we obtain the following statement which in es- 
sence was proved in El1 1 (where the proof of a general character was obtained in con - 
nection with the analysis of a particular mechanical system): any equilibrium point is 
stable at the initial perturbation of parameter a. Stability of equilibrium z = 0 at 
the initial perturbation of parameter a is understood to imply the fulfilment of the 
following conditions: for any 8 > 0 there exists 6 >*O such that any trajectory 

3 (z”, a“, t), where x0 E 06 (e) and a” E 0’ (0) , does not emanate from 
08 (e) ( XI is the phase space). 
In this sense it is possible to say that when (z”, o?) is a point of stability change 

on some branch of the stability curve and is stable, branc~ng at that point is less dan - 
germs than when it is unstable [4,5 3. 

Remark 3.3, If stability is understood in the sense described above, it is possible 
to extend Theorem 3.2 to the simplest case of a nonconservative system, viz. the two- 
dimensional autonomous dynamic system that depends on parameter 

5’ = f (t, a), t = (El, I*) (3.3) 

where function f (I, a) is con~uously ~fferen~able with respect to 2 and continuous 
with respect to a. 

Theorem 3.4. If (0, 01 is the Unit equilibrium point of system (3.1). it is 
unstable at the initial perturbation of parameter a. 

Let us assume the opposite, namely, that the limit equilibrium point (0, 0) is stable 
in the sense defined above. Then for a reasonably small 6 > 0 the motion 5 = z W’, 

a”, t), where 9 E 0’ (8) and a” E Od (0) , is bounded in the neighborhood 0 (0). 
Hence, when a = a0 there exists in 0 (6) a limit cycle and the region bounded by 
it contains at least one equilibrium point. This contradicts the assumption that (0, 0)is 
a limit point. 

4. Let us consider the case of m parameters ccl, (~2,. . . , %I. 
Here CC is understood to represent the vector of the related m-dimensional space 

A. The introduced in S@zt. 1 defibitions of set B open with respect to a , of the 
point of branching of property p (z, a) , and of trivial branching apply in this case 
without any alteration. The concept of the limit point of branching is extended as fol- 
lows. We call the branching point (8, a”) of property fi (5, a) limit point, if the 
determining set B of that property is not open with respect to a at the considered 
point (the fact that set n ’ = 0 is not open at the limit point played an important 
part in the proof of Theorems 3.2 and 3.4 1. 

Let * for example, set B be determined by equation af + pa - xs = 1 (a hyper- 
boloid of one sheet in the space (a,, q, x), where m = 2 and n = 1 1. The 

set is open with respect to a at all of its points * except at points of the circle aI2 + 
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cc22 = 1, x = 0 that are limit branching points. 
lf at least one cylindriical cross section of set B exists and has (z’, a”) as a limit 

point 05 1 in the meaning defined in Sect. 1, then it is obviously a limit point in the 
new meaning. 

A cross section is called cylindrical when it is defined by the equality 01 = a (s) 
(a” = a (so)), where s E s is a real parameter, It is assumed that this equality 

determines a simple part of a curve in space A (the cross section “directrix” 1. The. 

set L” C XS defined by the equality p (5, a (a)) = 1 corresponds to the cy- 
lindrical cross section L C B C XA . lf one of parameters a i is taken as para - 
meter s (as in Cl5 I>, then L* is the projection of L on the subspace (z, ai). 

we say that the cylindrical cross section L contains a single half-branch that 

adjoins point (z’, a”), if a single half-branch of set L* adjoins point (z“, s’)E XS 

in the sense defined in Sect. 1. In that case Lemma 2.1 applies to cross section L 
(with the substitution of words “cross section L of equilibrium surface B” for 1( equi- 

librium curve B” > . From this the follows the theorem analogous to Theorem 3.3. 

Theorem 4.1. lf in the neighborhood of a nontrivial branching point grad, 
n (x, a) is continuous with respect to (z, a) and there exists at least one cylind- 

rical cross section of the equilibrium surface that contains a single half-branch adjoin- 
ing the considered point, the stability properties of the branching point are the same as 

along the single half-branch (irrespective of the form of other cross sections). 
Lemma 2.2 and Theorems 3.1, 3.2, and 3.4 apply to the case of m parameters 

without any alteration. The proof is in essence the same as in Sects, 2 and 3. 

5. Example 1. Let us consider the example of a pendulum whose horizontal 
axis rotates around the vertical examined in [3 1. Curves of steady motions obtained in 

[3 1 for the cases of 0 < cc < 1 (a), -A3 < a < 0 (b), a < - ii, (c) are shown in Fig. 
2, where p >, 0 is a quantity proportional to the square of the generalized momentum 

that corresponds to the rotational velocity of the pendulum axis, 8 is a positional co- 

ordinate which defines the deflection angle of the pendulum axis from vertical, 

Fig. 2 

and a = (B - C)/B (A, 23, and C are, respectively, the equatorial and axial 

moments of inertia about the principal axes, with the coordinate origin located at the 
pendulum suspension point, A = B). 

The coordinates [fi, 31 of branching points are 

RI, c (ie.9, 0 
a 1 (O<a<l), Al2 L -k$, 3~1 (-f<a<o) 
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The solid and dash lines in Fig. 2 denote, respectively, stable and unstable sections 
Of the equilibrium curve. ‘%e nature of noncritical point stability was determined in 
E3 I by analyzing the sign of Poincari ‘s stability coefficient of the considered there sys- 
tern. At branching points MI - Mt the stability coefficient is zero, hence the deter- 
mination of the nature of stability at these points necessitates further analysis, On the 

basis of theorems in Section 3 we conclude that point MI and Me are stable since both 
are adjoined by single stable half-branches (on the left and right, respectively ) ; point 
Ma is unstable because it is a limit point, and point M, is a&o unstable since a single 

unstable half-branch adjoins it on the left, 

These conclusions can be directly verified by analyzing higher derivatives of the 

Routh potential with respect to 6 at respective points. 
Using the formula for the Routh potential W [31 it is possible to show that IV”’ 

(&Is) > 0 (primes denote differentiation with respect to 6 >. This proves the in- 

stability of point Ha. Bit points MI, 1M,, and k, we have W”’ = 0 and 

~~‘rr(,+J*f = _ .$ _t 4 ‘: -+?I , $a$?““’ (Jf,) _ iQf”” (.$f,) = f _ 4 ‘; :i_d 

where the first expression is positive when 0 < a < 1 which implies stability of point 
Ml. The secondexpressionisnegative when - “/Y < & < 0 and positive when a ( 

--r/a t which proves the instability of point iw, and stability of point Ma. 

Note that the law of stability change is not satisfied on the vertical straight line 

passing through MS Fig. 2, c 1 El, 2 I (it is of course satisfied on straight Lines that do 

not pass through branching points 1. 

Example 2. As an example of the case of several parameters (Sect, 41 we con- 
sider the problem of stability of the degenerate permanent rotation of a heavy symmetric 
body with a fixed point whose center of mass is above the suspension point * We take 
Euler ‘s angles 6, & and g, as the generalized coordinates and the generalized mo- 

menta fia and 8s of the cyclic coordinates II, and ‘p as parameters of steady 

motion surfaces [3,16 1. In the notation used in cl6 I that surface in space (8, &, bs) 

is defined by 

Permanent rotations lie on the straight line fi, = & = fi, 0 = 0 , while the de - 

generate permanent rotation 

fi* = 4AMgz,, 8 = 0 (5.2) 

(on which the second differential of the Routh potential is degenerate 3 is situated at the 

boundary of stability region f3’ - 4A Mgz, > 0 of that straight line El6 3. It was shown 

in Cl7 f that it is stable. 
We shall prove the stability of that motion without analyzing higher derivatives of 

the Routh potential. Theorem 4.1 is applicable when at least one cross section of sur- 
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face (5.1) contains a single half-branch adjoining point (5.2 1. Let us consider the cy- 

lindrical cross section produced by the plane S, = 8a = 8 for which formula (5.1) 

reduces to the form 

( 8s - 4AiMgz, co+ $) sin $ = 0 (5.3) 

At that cross section (5.2 1 defines a branching point. Formula (5.3) implies the 
existence of the single branch 0 = 0 when $2 - 4AMgz@ > 0. Since that branch is 

stable, point (5.2 ) is by Theorem 4.1 also stable, Q,. E. D. 
Note that when S* - 4A Mgz,, > 0 the stability of nondegenerate permanent ro- 

tations, as well as that of regular precessions can also be determined by the form of 
the stationary motion surface using the R&car& - Chetaev theory of e~i~b~urn bi - 

furcation El * 2 1 and on the strength of the investigation in I3 I. Since the instability of 
point 0 = &, = & = 0 is evident on physical grounds, hence along the trivial branch 

9 = 0 of cross section (5.3 ) the region to the left of point (5.2 ) is unstable, while to 

the right of it it is stable. That cross section nontrivial branches are directed to the 

left of that point and consequently, by the law of stability change [l-31 they are stable 

(cf. Fig. 1, b 1. This implies the stability of nontrivial branches of surface (5.1)) since 
they do not contain branching points. 

The author thanks V, V . Rumiantsev for his interest in this work and valuable re - 
marks, and V. N ~ub~ovs~ and A. V . Kerapetian for discussing a number of prob - 

lems considered in this paper. 
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